Магнитное поле вокруг проводника существует. Суть магнитного поля. Как и почему создается электромагнитное поле, его природа


Одно нам уже ясно: ни электричество ни магнетизм не могут быть без электронов; и в этом уже проявляется электромагнетизм. Говорили мы и о том, что катушка с током порождает магнитное поле . Задержимся на последнем явлении и уточним - как оно происходит.

Будем смотреть на катушку с торца, и пусть электрический ток по ней идет против часовой стрелки. Ток представляет собой поток электронов, скользящий по поверхности проводника (только на поверхности - открытые присасывающие желоба). Поток электронов будет увлекать за собой прилегающий эфир, и он начнет также двигаться против часовой стрелки. Скорость прилегающего к проводнику эфира будет определяться скоростью электронов в проводнике, а она, в свою очередь, будет зависеть от перепада эфирного давления (от электрического напряжения на катушке) и от проходного сечения проводника. Увлекаемый током эфир будет затрагивать соседние слои, и они также будут двигаться внутри и вне катушки по кругу. Скорость закрученного эфира распределится следующим образом: наибольшее ее значение, разумеется, - в районе витков; при смещении к центру она уменьшается по линейному закону, так что в самом центре она окажется нулевой; при удалении от витков на периферию скорость также будет уменьшаться, но не по линейному, а по более сложному закону.

Закрученное током макрозавихрение эфира начнет ориентировать электроны таким образом, что все они повернутся до параллельности осей вращения с осью катушки; при этом внутри катушки они будут вращаться против часовой стрелки, а за ее переделами - по часовой; одновременно электроны будут стремиться к соосному расположению, то есть будут собираться в магнитные шнуры. Процесс ориентирования электронов займет какое-то время, и по завершению его внутри катушки возникает магнитный пучок с северным полюсом в нашу сторону, а за пределами катушки, наоборот, северный полюс окажется удаленным от нас. Таким образом, мы доказали справедливость известного в электротехнике правила винта или буравчика, устанавливающего связь между направлением тока и направлением рожденного им магнитного поля.

Магнитная сила (напряженность) в каждой точке магнитного поля определится изменением скорости эфира в этой точке, то есть производной от скорости по удалению от витков катушки : чем круче изменение скорости, тем больше напряженность. Если соотносить магнитную силу катушки с ее электрическими и геометрическими параметрами, то она имеет прямую зависимость от величины тока и обратную - от диаметра катушки. Чем больше ток и чем меньше диаметр, тем больше возможностей собрать электроны в шнуры определенного направления вращения и тем большей окажется магнитная сила катушки. О том, что напряженность магнитного поля может усиливаться или ослабляться средой, уже говорилось.

Процесс преобразования электричества постоянного тока в магнетизм - не обратим: если в катушку поместить магнит, то ток в ней не возникает. Энергия макрозавихрения, существующего вокруг магнита, настолько мала, что не в силах заставить смещаться электроны по виткам при самых малых сопротивлениях для них. Еще раз напомним, что в обратном процессе макрозавихрение эфира, выполняющее роль посредника, лишь ориентировало электроны, и не более того, то есть только управляло магнитным полем, а сила поля определялась количеством однонаправленных магнитных шнуров.

Многие знают о существовании так называемого магнитного поля. Самым распространенным предметом, вокруг которого оно существует является обычный постоянный магнит. Что мы о нем знаем и как он себя обычно проявляет? Это кусок из твердого материала, притягивающий к себе железные предметы. Он может иметь любую форму, ее предают при изготовлении с учетом конкретного предназначения магнита. Магниты имеют полюса - южный и северный. Если взять два куска магнита и попытаться их соединить, то в одном случае они попытаются притянутся друг к другу, а в другом случае они будут стремится оттолкнуться. Одноименные полюса отталкиваются, а разноименные притягиваются.

Помимо этого если одни целый магнит разбить на два куска (не важно, будут ли он и равны или нет) мы получим уже два разных магнита, у которых будут свои магнитные полюса и своя интенсивность притягивания. В этом случае сила магнетизма будет зависеть от размеров этих самых магнитов. Почему же так происходит? В чем заключается суть этих интересных явлений, связанных с магнетизмом?

А суть магнитного поля заключается в следующем. Из школьной физики вы должны были помнить, что существуют так называемые электрические заряды (электроны и ионы). В твердых веществах носителями электрических зарядов являются электроны, а в жидких и газообразных - ионы. Магнитные поля, как и любые другие поля, являются особым видом материи, которая проявляет себя в виде некой силы, невидимой глазу. Хотя точнее будет, пожалуй, говорить электромагнитные поля так как именно в суммарной форме они себя проявляют (электрическое и магнитное поле).

Итак, магнитное поле существует вокруг движущегося электрического заряда. Именно движущегося. Вокруг электрических зарядов, что находятся в статическом состоянии существует только электрическое поле. Но поскольку заряды находятся в постоянном движении, то речь скорей идет о интенсивности этого движения. Одно дело когда электроны (частицы, имеющие отрицательный электрический заряд) просто сконцентрированы в металлическом шаре (максимальным будет именно электрическое поле вокруг шара) и в этом случае их динамическое движение будет гораздо меньше проявляться нежели в случае их непосредственного движения по проводнику (именно тут мы увидим максимальное магнитное поле) от одного полюса источника питания к другому.

Получается, что суть магнитного поля заключается в его образовании именно вокруг движущихся электрических зарядов. И чем быстрее будет двигаться заряд по проводнику, тем больше будет интенсивность магнитного поля вокруг этого самого заряда. Кроме этого магнитные поля могут суммироваться если они имеют одну и ту же направленность. После чего уже имеем - чем быстрее движется электрический заряд и чем больше количество этих зарядов, движение которых совпадает по направлению, тем сильнее будет электромагнитное поле вокруг этих зарядов (и вокруг этого электрического проводника, по которому они перемещаются).

Теперь можно понять, почему вокруг обычной медной катушки, по которой течет постоянный ток, появляется магнитное поле и от чего зависит его интенсивность. Просто само движение тока, электронов (заряженных частиц с отрицательным знаком) по катушки и порождает электромагнитные поля. И чем больше количество витков у этой катушки, больше ток, проходящий по ней, тем больше и сила магнитного поля вокруг нее. А почему тогда лампочка, по которой бежит ток, не имеет такого магнитного поля (интенсивного) как у катушки? Просто электрическая энергия у лампочки больше расходуется именно на свет и тепло, и в меньшей степени на электромагнитное поле. В то время как у плотно намотанной, сконцентрированной катушки большая часть электрической энергии тратится именно на создание магнитного поля и совсем незначительная его часть на выделение тепла.

А как работают постоянные магниты? Ведь по ним же не течет ток. Токи есть, только это микротоки, порождаемые движением электронов внутри самого вещества. Тут все дело в однонаправленности этих токов и способности вещества удерживать постоянное состояние этой однонаправленности. Движение электронов присутствует во всех веществах, но вот магнитные свойства проявляются только у тех, которые обладают ферромагнитными свойствами. Ферромагнетики, это вещества, которые легко могут менять (при определенных условиях) и стабильно удерживать определенную внутреннюю структуру своих частиц, влияющую на магнитные свойства этого вещества.

Итак, мы берем вещество, с хорошими ферромагнитными свойствами, помещаем его в постоянное электромагнитное поле высокой интенсивности, после чего наблюдаем перестраивание внутренней структуры этого вещества. Появляется однонаправленность его магнитных частиц. В итоге, это вещество само становится магнитом. Все его внутреннии частички (атомы, молекулы) с одной стороны образовали южный магнитный полюс, а с другой стороны - северный. В результате мы получили обычный магнит. Если этот магнит поместить в переменное магнитное поле (большой интенсивности), сильно нагреть, подвергать сильным механическим ударам, то в итоге мы может размагнитить наше ферромагнитное вещество. Оно утратит свои магнитные свойства.

P.S. Электромагнитное поле существует повсюду, оно есть везде. Только вот его интенсивность везде разная и не во всех вещах имеется свойство стабильного поддержания этого магнитного поля. Магниты можно делать из вещей, которые до этого не были таковыми (их просто нужно намагнитить). Либо магнитное поле можно получить за счет пропускания постоянного тока через медную катушку. В этом случае мы уже получим электромагнит. Он будет работать только тогда, когда к нему подключено электрическое питание.

Магнитное поле – это материальная среда, через которую осуществляется взаимодействие между проводниками с током или движущимися зарядами.

Свойства магнитного поля :

Характеристики магнитного поля :

Для исследования магнитного поля используют пробный контур с током. Он имеет малые размеры, и ток в нём много меньше тока в проводнике, создающем магнитное поле. На противоположные стороны контура с током со стороны магнитного поля действуют силы, равные по величине, но направленные в противоположные стороны, так как направление силы зависит от направления тока. Точки приложения этих сил не лежат на одной прямой. Такие силы называют парой сил . В результате действия пары сил контур не может двигаться поступательно, он поворачивается вокруг своей оси. Вращающее действие характеризуетсямоментом сил .


, гдеl плечо пары сил (расстояние между точками приложения сил).

При увеличении тока в пробном контуре или площади контура пропорционально увеличится момент пары сил. Отношение максимального момента сил, действующего на контур с током, к величине силы тока в контуре и площади контура – есть величина постоянная для данной точки поля. Называется она магнитной индукцией .


, где

-магнитный момент контура с током.

Единица измерения магнитной индукции –Тесла [Тл].

Магнитный момент контура – векторная величина, направление которой зависит от направления тока в контуре и определяется поправилу правого винта : правую руку сжать в кулак, четыре пальца направить по направлению тока в контуре, тогда большой палец укажет направление вектора магнитного момента. Вектор магнитного момента всегда перпендикулярен плоскости контура.

За направление вектора магнитной индукции принимают направление вектора магнитного момента контура, ориентированного в магнитном поле.

Линия магнитной индукции – линия, касательная к которой в каждой точке совпадает с направлением вектора магнитной индукции. Линии магнитной индукции всегда замкнуты, никогда не пересекаются.Линии магнитной индукции прямого проводника с током имеют вид окружностей, расположенных в плоскости, перпендикулярной проводнику. Направление линий магнитной индукции определяют по правилу правого винта.Линии магнитной индукции кругового тока (витка с током) также имеют вид окружностей. Каждый элемент витка длиной

можно представить как прямолинейный проводник, который создаёт своё магнитное поле. Для магнитных полей выполняется принцип суперпозиции (независимого сложения). Суммарный вектор магнитной индукции кругового тока определяется как результат сложения этих полей в центре витка по правилу правого винта.

Если величина и направление вектора магнитной индукции одинаковы в каждой точке пространства, то магнитное поле называют однородным . Если величина и направление вектора магнитной индукции в каждой точке не изменяются с течением времени, то такое поле называютпостоянным.

Величина магнитной индукции в любой точке поля прямо пропорциональна силе тока в проводнике, создающем поле, обратно пропорциональна расстоянию от проводника до данной точки поля, зависит от свойств среды и формы проводника, создающего поле.


, где

Н/А 2 ; Гн/м– магнитная постоянная вакуума ,

-относительная магнитная проницаемость среды ,


-абсолютная магнитная проницаемость среды .

В зависимости от величины магнитной проницаемости все вещества разделяют на три класса:



При увеличении абсолютной проницаемости среды увеличивается и магнитная индукция в данной точке поля. Отношение магнитной индукции к абсолютной магнитной проницаемости среды – величина постоянная для данной точки поли, е называют напряжённостью.


.

Векторы напряжённости и магнитной индукции совпадают по направлению. Напряжённость магнитного поля не зависит от свойств среды.

Сила Ампера – сила, с которой магнитное поле действует на проводник с током.

Гдеl – длина проводника,- угол между вектором магнитной индукции и направлением тока.

Направление силы Ампера определяют по правилу левой руки : левую руку располагают так, чтобы составляющая вектора магнитной индукции, перпендикулярная проводнику, входила в ладонь, четыре вытянутых пальца направить по току, тогда отогнутый на 90 0 большой палец укажет направление силы Ампера.

Результат действия силы Ампера – движение проводника в данном направлении.

Если= 90 0 , тоF=max, если= 0 0 , тоF= 0.

Сила Лоренца – сила действия магнитного поля на движущийся заряд.


, гдеq– заряд,v– скорость его движения,- угол между векторами напряжённости и скорости.

Сила Лоренца всегда перпендикулярна векторам магнитной индукции и скорости. Направление определяют по правилу левой руки (пальцы – по движению положительного заряда). Если направление скорости частицы перпендикулярно линиям магнитной индукции однородного магнитного поля, то частица движется по окружности без изменения кинетической энергии.

Так как направление силы Лоренца зависит от знака заряда, то её используют для разделения зарядов.

Магнитный поток – величина, равная числу линий магнитной индукции, которые проходят через любую площадку, расположенную перпендикулярно линиям магнитной индукции.


, где- угол между магнитной индукцией и нормалью (перпендикуляром) к площадиS.

Единица измерения – Вебер [Вб].

Способы измерения магнитного потока:

    Изменение ориентации площадки в магнитном поле (изменение угла)

    Изменение площади контура, помещённого в магнитное поле

    Изменение силы тока, создающего магнитное поле

    Изменение расстояния контура от источника магнитного поля

    Изменение магнитных свойств среды.

Фарадей регистрировал электрический ток в контуре, не содержащим источника, но находившемся рядом с другим контуром, содержащим источник. Причём ток в первом контуре возникал в следующих случаях: при любом изменении тока в контуре А, при относительном перемещении контуров, при внесении в контур А железного стержня, при движении относительно контура Б постоянного магнита. Направленное движение свободных зарядов (ток) возникает только в электрическом поле. Значит, изменяющееся магнитное поле порождает электрическое поле, которое и приводит в движение свободные заряды проводника. Это электрическое поле называютиндуцированным иливихревым .

Отличия вихревого электрического поля от электростатического:

    Источник вихревого поля – изменяющееся магнитное поле.

    Линии напряжённости вихревого поля замкнуты.

    Работа, совершаемая этим полем по перемещению заряда по замкнутому контуру не равна нулю.

    Энергетической характеристикой вихревого поля является не потенциал, а ЭДС индукции – величина, равная работе сторонних сил (сил не электростатического происхождения) по перемещению единицы заряда по замкнутому контуру.


.Измеряется в Вольтах [В].

Вихревое электрическое поле возникает при любом изменении магнитного поля, независимо от того, есть ли проводящий замкнутый контур или его нет. Контур только позволяет обнаружить вихревое электрическое поле.

Электромагнитная индукция – это возникновение ЭДС индукции в замкнутом контуре при любом изменении магнитного потока через его поверхность.

ЭДС индукции в замкнутом контуре порождает индукционный ток.


.

Направление индукционного тока определяют поправилу Ленца : индукционный ток имеет такое направление, что созданное им магнитное поле противодействует любому изменению магнитного потока, породившего этот ток.

Закон Фарадея для электромагнитной индукции : ЭДС индукции в замкнутом контуре прямо пропорциональна скорости изменения магнитного потока через поверхность, ограниченную контуром.


Токи Фуко – вихревые индукционные токи, возникающие в проводниках больших размеров, помещённых в изменяющееся магнитное поле. Сопротивление такового проводника мало, так как он имеет большое сечениеS, поэтому токи Фуко могут быть большими по величине, в результате чего проводник нагревается.


Самоиндукция – это возникновение ЭДС индукции в проводнике при изменении силы тока в нём.

Проводник с током создаёт магнитное поле. Магнитная индукция зависит от силы тока, следовательно собственный магнитный поток тоже зависит от силы тока.


, гдеL– коэффициент пропорциональности,индуктивность .

Единица измерения индуктивности – Генри [Гн].

Индуктивность проводника зависит от его размеров, формы и магнитной проницаемости среды.

Индуктивность увеличивается при увеличении длины проводника, индуктивность витка больше индуктивности прямого проводника такой же длины, индуктивность катушки (проводника с большим числом витков) больше индуктивности одного витка, индуктивность катушки увеличивается, если в неё вставить железный стержень.

Закон Фарадея для самоиндукции :

.

ЭДС самоиндукции прямо пропорциональна скорости изменения тока.

ЭДС самоиндукции порождает ток самоиндукции, который всегда препятствует любому изменению тока в цепи, то есть, если ток увеличивается, ток самоиндукции направлен в противоположную сторону, при уменьшении тока в цепи, ток самоиндукции направлен в ту же сторону. Чем больше индуктивность катушки, тем больше ЭДС самоиндукции возникает в ней.

Энергия магнитного поля равна работе, которую совершает ток для преодоления ЭДС самоиндукции за время, пока ток возрастает от нуля до максимального значения.


.

Электромагнитные колебания – это периодические изменения заряда, силы тока и всех характеристик электрического и магнитного полей.

Электрическая колебательная система (колебательный контур) состоит из конденсатора и катушки индуктивности.

Условия возникновения колебаний :

    Систему надо вывести из состояния равновесия, для этого сообщают заряд конденсатору. Энергия электрического поля заряженного конденсатора:


.

    Система должна возвращаться в состояние равновесия. Под действием электрического поля заряд переходит с одной пластины конденсатора на другую, то есть в цепи возникает электрический ток, которые идёт по катушке. При увеличении тока в катушке индуктивности возникает ЭДС самоиндукции, ток самоиндукции направлен в противоположную сторону. Когда ток в катушке уменьшается, ток самоиндукции направлен в ту же сторону. Таким образом, ток самоиндукции стремиться возвратить систему к состоянию равновесия.

    Электрическое сопротивление цепи должно быть малым.

Идеальный колебательный контур не имеет сопротивления. Колебания в нём называютсвободными.

Для любой электрической цепи выполняется закон Ома, согласно которому ЭДС, действующая в контуре, равна сумме напряжений на всех участках цепи. В колебательном контуре источника тока нет, но в катушке индуктивности возникает ЭДС самоиндукции, которая равна напряжению на конденсаторе.


Вывод: заряд конденсатора изменяется по гармоническому закону .

Напряжение на конденсаторе :

.

Сила тока в контуре :

.

Величина

- амплитуда силы тока.

Отличие от заряда на

.

Период свободных колебаний в контуре :

Энергия электрического поля конденсатора :

Энергия магнитного поля катушки :

Энергии электрического и магнитного полей изменяются по гармоническому закону, но фазы их колебаний разные: когда энергия электрического поля максимальна, энергия магнитного поля равна нулю.

Полная энергия колебательной системы :

.

В идеальном контуре полная энергия не изменяется.

В процессе колебаний энергия электрического поля полностью превращается в энергию магнитного поля и наоборот. Значит энергия в любой момент времени равна или максимальной энергии электрического поля, или максимальной энергии магнитного поля.


Реальный колебательный контур содержит сопротивление. Колебания в нём называютзатухающими.

Закон Ома примет вид:

При условии что затухание мало (квадрат собственной частоты колебаний много больше квадрата коэффициента затухания) логарифмический декремент затухания:


При сильном затухании (квадрат собственной частоты колебаний меньше квадрата коэффициента колебаний):









Это уравнение описывает процесс разрядки конденсатора на резистор. При отсутствии индуктивности колебаний не возникнет. По такому закону изменяется и напряжение на обкладках конденсатора.

Полная энергия в реальном контуре уменьшается, так как на сопротивлениеRпри прохождении тока выделяется теплота.

Переходный процесс – процесс, возникающий в электрических цепях при переходе от одного режима работы к другому. Оценивается временем (), в течение которого параметр, характеризующий переходный процесс изменится в е раз.




Для контура с конденсатором и резистором :

.

Теория Максвелла об электромагнитном поле :

1 положение:

Всякое переменное электрическое поле порождает вихревое магнитное. Переменное электрическое поле было названо Максвеллом током смещения, так как оно подобно обычному току вызывает магнитное поле.

Для обнаружения тока смещения рассматривают прохождение тока по системе, в которую включён конденсатор с диэлектриком.


Плотность тока смещения :

. Плотность тока направлена в сторону изменения напряжённости.

Первое уравнение Максвелла :

- вихревое магнитное поле порождается как токами проводимости (движущимися электрическими зарядами) так и токами смещения (переменным электрическим полем Е).

2 положение:

Всякое переменное магнитное поле порождает вихревое электрическое поле – основной закон электромагнитной индукции.

Второе уравнение Максвелла :

- связывает скорость изменения магнитного потока сквозь любую поверхность и циркуляцию вектора напряжённости электрического поля, возникающего при этом.

Любой проводник с током создаёт в пространстве магнитное поле . Если ток постоянный (не изменяется с течением времени), то и связанное с ним магнитное поле тоже постоянное. Изменяющийся ток создаёт изменяющиеся магнитное поле. Внутри проводника с током существует электрическое поле. Следовательно, изменяющееся электрическое поле создаёт изменяющееся магнитное поле.

Магнитное поле вихревое, так как линии магнитной индукции всегда замкнуты. Величина напряженности магнитного поля Н пропорциональна скорости изменения напряжённости электрического поля . Направление вектора напряжённости магнитного полясвязано с изменением напряжённости электрического поляправилом правого винта: правую руку сжать в кулак, большой палец направить в сторону изменения напряжённости электрического поля, тогда согнутые 4 пальца укажут направление линий напряжённости магнитного поля.

Любое изменяющееся магнитное поле создаёт вихревое электрическое поле , линии напряжённости которого замкнуты и расположены в плоскости, перпендикулярной напряжённости магнитного поля.

Величина напряжённости Е вихревого электрического поля зависит от скорости изменения магнитного поля . Направление вектора Е связано с направлением изменения магнитного пол Н правилом левого винта: левую руку сжать в кулак, большой палец направить в сторону изменения магнитного поля, согнутые четыре пальца укажут направление линий напряжённости вихревого электрического поля.

Совокупность связанных друг с другом вихревых электрического и магнитного полей представляют электромагнитное поле . Электромагнитное поле не остаётся в месте зарождения, а распространяется в пространстве в виде поперечной электромагнитной волны.

Электромагнитная волна – это распространение в пространстве связанных друг с другом вихревых электрического и магнитного полей.

Условие возникновения электромагнитной волны – движение заряда с ускорением.

Уравнение электромагнитной волны :


- циклическая частота электромагнитных колебаний

t– время от начала колебаний

l– расстояние от источника волны до данной точки пространства

- скорость распространения волны

Время движения волны от источника до данной точки.

Векторы Е и Н в электромагнитной волне перпендикулярны друг другу и скорости распространения волны.

Источник электромагнитных волн – проводники, по которым протекают быстропеременные токи (макроизлучатели), а также возбуждённые атомы и молекулы (микроизлучатели). Чем больше частота колебаний, тем лучше излучаются в пространстве электромагнитные волны.

Свойства электромагнитных волн:

    Все электромагнитные волны – поперечные

    В однородной среде электромагнитные волны распространяются с постоянной скоростью , которая зависит от свойств среды:


- относительная диэлектрическая проницаемость среды

- диэлектрическая постоянная вакуума,

Ф/м, Кл 2 /нм 2

- относительная магнитная проницаемость среды

- магнитная постоянная вакуума,

Н/А 2 ; Гн/м

    Электромагнитные волны отражаются от препятствий, поглощаются, рассеиваются, преломляются, поляризуются, дифрагируют, интерферируют .

    Объёмная плотность энергии электромагнитного поля складывается из объёмных плотностей энергии электрического и магнитного полей:

    Плотность потока энергии волн – интенсивность волны :


-вектор Умова-Пойнтинга .

Все электромагнитные волны расположены в ряд по частотам или длинам волн (

). Этот ряд –шкала электромагнитных волн .

    Низкочастотные колебания . 0 – 10 4 Гц. Получают в генераторах. Они плохо излучаются

    Радиоволны . 10 4 – 10 13 Гц. Излучаются твёрдыми проводниками, по которым проходят быстропеременные токи.

    Инфракрасное излучение – волны, излучаемые всеми телами при температуре свыше 0 К, благодаря внутриатомным и внутри молекулярным процессам.

    Видимый свет – волны, оказывающие действие на глаз, вызывая зрительное ощущение. 380-760 нм

    Ультрафиолетовое излучение . 10 – 380 нм. Видимый свет и УФ возникают при изменении движения электронов внешних оболочек атома.

    Рентгеновское излучение . 80 – 10 -5 нм. Возникает при изменении движения электронов внутренних оболочек атома.

    Гамма-излучение . Возникает при распаде ядер атомов.

Направление магнитных силовых линий можно определить по правилу буравчика. Если поступательное движение буравчика (рис. 27) совместить с направлением тока в проводнике, то вращение его рукоятки укажет направление силовых …
линий магнитного поля вокруг проводника.
Чем больше ток, проходящий по проводнику, тем сильнее возникающее вокруг него магнитное поле. При изменении направления тока магнитное поле также изменяет свое направление.

По мере удаления от проводника магнитные силовые линии располагаются реже.

Способы усиления магнитных полей. Для получения сильных магнитных полей при небольших токах обычно увеличивают число проводников с током и выполняют их в виде ряда витков; такое устройство называют катушкой.

При проводнике, согнутом в виде витка (рис. 28,а), магнитные поля, образованные всеми участками этого проводника, будут внутри витка иметь одинаковое направление. Поэтому интенсивность магнитного поля внутри витка будет больше, чем вокруг прямолинейного проводника. При объединении витков в катушку магнитные поля, созданные отдельными витками, складываются (рис. 28,б) и их силовые линии соединяются в общий магнитный поток. При этом концентрация силовых линий внутри катушки возрастает, т. е. магнитное поле внутри нее усиливается. Чем больше ток, проходящий через катушку, и чем больше в ней витков, тем сильнее создаваемое катушкой магнитное поле.

Катушка, обтекаемая током, представляет собой искусственный электрический магнит. Для усиления магнитного поля внутрь катушки вставляют стальной сердечник; такое устройство называется электромагнитом.

18. Магнитные свойства различных веществ.

Все вещества в зависимости от магнитных свойств делят на три группы: ферромагнитные, парамагнитные и диамагнитные.

К ферромагнитным материалам относят железо, кобальт, никель и их сплавы. Они обладают высокой магнитной проницаемостью µ ихорошо притягиваются к магнитам и электромагнитам.

К парамагнитным материалам относят алюминий, олово, хром, марганец, платину, вольфрам, растворы солей железа и др. Парамагнитные материалы притягиваются к магнитам и электромагнитам во много раз слабее, чем ферромагнитные материалы.

Диамагнитные материалы к магнитам не притягиваются, а, наоборот, отталкиваются. К ним относят медь, серебро, золото, свинец, цинк, смолу, воду, большую часть газов, воздух и пр.

Магнитные свойства ферромагнитных материалов. Ферромагнитные материалы благодаря их способности намагничиваться широко применяют при изготовлении электрических машин, аппаратов в других электротехнических установок.

Кривая намагничивания . Процесс намагничивания ферромагнитного материала можно изобразить в виде кривой намагничивания (рис. 31), которая представляет собой зависимость индукции В от напряженности Н магнитного поля (от намагничивающего тока I ).

Кривую намагничивания можно разбить на три участка: О-а , на котором магнитная индукция возрастает почти пропорционально намагничивающему току; а-б , на котором рост магнитной индукции замедляется, и участок магнитного насыщения за точкой б , где зависимость В от Н становится опять прямолинейной, но характеризуется медленным нарастанием магнитной индукции при увеличении напряженности поля.

Перемагничивание ферромагнитных материалов, петля гистерезиса . Большое практическое значение, особенно в электрических машинах и установках переменного тока, имеет процесс перемагничивания ферромагнитных материалов. На рис. 32 показан график изменения индукции при намагничивании и размагничивании ферромагнитного материала (при изменении намагничивающего тока I . Как видно из этого графика, при одних и тех же значениях напряженности магнитного поля магнитная индукция, полученная при размагничивании ферромагнитного тела (участок а-б-в ), будет больше индукции, полученной при намагничивании (участки О-а и д-а ). Когда намагничивающий ток будет доведен до нуля, индукция в ферромагнитном материале не уменьшится до нуля, а сохранит некоторое значение В r , соответствующее отрезку О-б . Это значение называется остаточной индукцией.

Явление отставания, или запаздывания, изменений магнитной индукции от соответствующих изменений напряженности магнитного поля называется магнитным гистерезисом, а сохранение в ферромагнитном материале магнитного поля после прекращения протекания намагничивающего тока - остаточным магнетизмом.

При изменении направления намагничивающего тока можно полностью размагнитить ферромагнитное тело и довести магнитную индукцию в нем до нуля. Обратная напряженность Н с , при которой индукция в ферромагнитном материале уменьшается до нуля, называется коэрцитивной силой. Кривую О-а , получающуюся при условии, что ферромагнитное вещество было предварительно размагничено, называют первоначальной кривой намагничивания. Кривую изменения индукции называют петлей гистерезиса.

Влияние ферромагнитных материалов на распределение магнитного поля . Если поместить в магнитное поле какое-либо тело из ферромагнитного материала, то магнитные силовые линии будут входить и выходить из него под прямым углом. В самом теле и около него будет иметь место сгущение силовых линий, т. е. индукция магнитного поля внутри тела и вблизи него возрастает. Если выполнить ферромагнитное тело в виде кольца, то во внутреннюю его полость магнитные силовые линии практически проникать не будут (рис. 33) и кольцо будет служить магнитным экраном, защищающим внутреннюю полость от влияния магнитного поля. На этом свойстве ферромагнитных материалов основано действие различных экранов, защищающих электроизмерительные приборы, электрические кабели и другие электротехнические устройства от вредного воздействия внешних магнитных полей.

Выбор редакции
Перегрев двигателя автомобиля – проблема, с которой может столкнуться каждый водитель. В этой статье мы можем узнать: - как вовремя...

Часто причиной неисправности картриджа становится износ его основных компонентов - фоторецепторного барабана, чистящего лезвия,...

Вконтакте ОдноклассникиЛазерный картридж состоит из отделения отработанного тонера и тонерного отсека. В состав отделения для...

Тем, кто разочаровался в растворимом кофе со стиков но не может обойтись без бодрящего чарующего напитка, пора обзаветись собственной...
Представьте, что вы первый раз столкнулись с необходимость разработки сайта. Как ничего не забыть по дороге и уже на начальном этапе...
Компания ИнжПласт занимается поставками трубы Корсис уже много лет, напрямую сотрудничая с заводом-производителем, а значит цена труб...
Требует предварительного расчета нагрузки общей массы конструкции на каждый элемент опоры. От этих данных зависит расстояние между...
Бетонный пол в бане является хорошей альтернативой деревянному, особенно в мокрых помещениях под укладку плитки. Конечно по времени и по...
Кирпич как универсальный строительный материал известен человечеству уже много веков. Этот кладочный камень имеет вид прямоугольного...